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Abstract

As the world population ages, the prevalence of Musculosketal conditions will
continue to rise. To meet the need for an automated means of detecting such
conditions from X-rays - particularly in developing countries with limited access
to radiologists - we introduce neXt-Ray, a model that detects whether upper-
extremity Bone X-Rays passed to it as inputs are abnormal. neXt-Ray differs from
a prior DenseNet-169-based attempt by the Stanford ML Group by utilizing a
single, more memory-efficient 152-Layer Residual Network as its architecture. Our
model achieves an AUC of 0.89, as well as a sensitivity of 0.78, a specificity of
0.83, and overall accuracy of 0.81. Compared on the Cohen’s kappa statistic, our
model outperforms the Stanford baseline and radiologists on finger studies and is
comparable to radiologist performance on humerus studies. However, it performs
worse than the Stanford baseline and radiologists on wrist, shoulder, hand, forearm,
and elbow studies, and overall.

1 Introduction

According to the World Health Organization, Musculoskeletal conditions are the world’s leading
cause of disability, affecting up to an estimated 1 in 3 people worldwide across all ages (2). These
conditions are made up of over 150 different diagnoses, ranging from simple fractures that heal
relatively quickly to longer-term conditions such as Osteoarthritis. As the global population continues
to age, the prevalence of such Musculoskeletal conditions will only continue to increase, as will
associated socioeconomic costs.

As such, the importance of easily diagnosing these conditions, which is often achieved by means
of Bone X-Ray scans examined by trained radiologists, will only continue to rise over the next few
decades. With only a limited number of trained radiologists in the world, with an especially small
number found in developing countries, having an automated means of detecting bone abnormalities
from X-Rays quickly and cheaply is critical. To this end, we introduce neXt-Ray, which takes as
input a Bone X-Ray scan from the upper extremity, passes it through a Convolutional Neural Network
(CNN), and outputs a prediction of whether the bone is normal or abnormal.

2 Related work

CNNs for Medical Tasks: CNNs have been used extensively for medical classification and detection
tasks and have performed at levels matching or even exceeding specialists in areas including skin-
cancer (6), pulmonary embolism (8), and heart arrhythmia (13). In particular, Residual Networks
(ResNet) - the primary architectural focus of this project - have proven successful in binary classifica-
tion tasks such as detection of Covid-19 in CT images, demonstrating their utility even on the most
novel medical conditions (3).
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CNNs for X-Rays: CNNs also have an established history of use with X-Ray images - the input to
this project’s model. CNNs provided promising results when used for disease classification from
Chest X-Rays (16) and the CheXNet system exceeded the performance of the average radiologist on
the F1 metric for detecting pneumonia in similar X-Ray images (15).

CNNs for Bone X-Rays: The source of inspiration for this project was the work done by the Stanford
ML Group on abnormality detection in Bone X-Rays (14). Their 169-layer DenseNet ensemble
model matched the best radiologists’ performance on detecting abnormalities for both finger and wrist
studies, but came up short on elbow, forearm, hand, humerus, and shoulder studies, as well as overall
performance. Two other significant contribution made by the team were the production of the MURA
Dataset and publishing data on the performance of radiologists’ on abnormality detection. Due to the
robustness of its reported metrics, the Stanford baseline serves as the standard of comparison for this
report.

Other teams have attempted to improve upon the Stanford baseline, such as the 2019 follow-up by
Dennis Banga and Peter Waiganjo. They used an ensemble neural network composed of a DenseNet-
201, MobileNet, and NASNETMobile (4). Although their model outperformed the Stanford baseline
on finger studies, it failed to match its performance in any other region or overall, demonstrating the
on-going challenge of abnormality detection in Bone X-Rays. While some more recent attempts have
eclipsed the performance of the Stanford baseline (9), virtually all have also used computationally
expensive ensemble models, showcasing the need for projects like this one involving more easily
deployable single model approaches.

3 Dataset and Features

The MURA (musculoskeletal radiographs) Dataset was produced as part of the work done by the
Stanford ML Group on abnormality detection in Bone X-Rays (1). It is made up of 40,561 multi-
view Bone X-Rays from 14,863 studies conducted at the Stanford Hospital between 2001 and 2012
(14). Each was hand-labeled by a board-certified radiologist as normal or abnormal at the time of
production. The scans are from one of seven regions: elbow, finger, forearm, hand, humerus, shoulder,
and wrist. It is among one of the largest publicly available datasets of radiographs.

Figure 1: Samples from the MURA Dataset

The Stanford ML Group has already divided the dataset into a training and validation set of sizes
36,808 and 3,197, respectively. The remaining 556 images are reserved as a special test set used to
evaluate models submitted to the on-going competition hosted by the group and have not been made
public. For the purpose of this project, we randomly split the 3,197 images in the original validation
set into our validation set of 2,557 images and a test set made of the remaining 640.

We applied some limited pre-processing to the raw MURA data. We resized all the variable-sized
images in the dataset to a consistent 320x320 pixels, converted all of them to Greyscale, and
normalized each to have the same mean and standard deviation as the images found in the ImageNet
training set (5).
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4 Methods

Our model takes as input an upper-extremity Bone X-Ray scan and runs it through a CNN, outputting
the probability of abnormality. If the probability is greater than 0.5, we predict that the scan is
abnormal.

Figure 2: Overview of neXt-Ray architecture

Our model makes use of a 152-Layer CNN in order to calculate the probability of abnormality. In
particular, we use a ResNet architecture. ResNets are made up of "residual blocks", each 3 layers
large in ResNet-152. Each of the blocks has a "skip connection," where the input to the first layer in
the block is added onto the pre-activation output of its last layer, which makes training of deep CNNs
viable (7).

We chose a ResNet architecture as they tend to be less memory-intensive than the DenseNets used in
prior implementations while still offering strong performance (12). As one of the goals is to be able
to use this model for X-Ray analysis in developing countries, having a less memory-hungry, single
model architecture based on a ResNet is useful for deploying it on cheap, offline devices.

We replaced the final fully-connected layer of the ResNet-152 with a sequence of a dropout layer, a
fully-connected layer with only one output, and a sigmoid nonlinearity. We made use of a standard
binary cross-entropy loss function and utilized the Adam optimization algorithm with the default
betas of β1 = 0.9 and β2 = 0.999. We applied random horizonal flips to the images during training.

5 Experiments

DenseNet Baseline: To establish our own baseline, we first implemented a model using a DenseNet-
169 architecture. Trained from scratch, it achieved 98% accuracy on the training set and 76% accuracy
on the validation set - clearly exhibiting high variance. With this baseline established, we moved on
to a ResNet implementation.

Initial Hyperparameter Tuning: A search for learning rate values between 0.001 and 0.00001
found that our best performance on the validation set came from α = 0.00001. We initialized our
ResNet model with pre-trained weights from a model trained on the ImageNet database and provided
by PyTorch (10).

Model L2 Dropout Frozen Layers Aug.? Batch Size Train Acc. Val Acc. Variance Val. Recall
1 ResNet-152 0.01 0 0 No 32 0.816 0.782 +0.034 0.725
2 ResNet-152 0.1 0.5 0 No 32 0.825 0.790 +0.035 0.650
3 ResNet-101 0.1 0.5 0 No 32 0.823 0.803 +0.02 0.681
4 ResNet-152 0 0 0 Yes 32 0.885 0.795 +0.096 0.675
5 ResNet-152 0.1 0.5 148 No 16 0.862 0.806 +0.056 0.768
6 ResNet-152 0.1 0.5 148 No 8 0.835 0.812 +0.023 0.721

Table 1: Results for different experiments. Hyperparameters that were tuned include number of layers in ResNet
model, L2-Regularization factor, Dropout factor, number of layers from the start of the model that were frozen,
whether data augmentation was used, and batch size. Reported metrics are accuracy on the training and validation
sets, the difference between those accuracies, and recall on the validation set. All experiments were performed
with a learning rate of 0.00001. The chosen configuration is in green.

Next, we worked to address the variance problem that carried over to the ResNet model, which proved
to be quite challenging. We ran dozens of trials to alleviate overfitting without compromising overall
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performance, experimenting with L2 Regularization, dropout, batch size, number of layers in our
model, freezing pre-trained layers in our model, and data augmentation by adding 50% more data to
our training set by randomly choosing images from our training set to rotate by up to 30 degrees. The
results on the training and validation sets for a sample of our most successful experiments are shown
in 1.

As shown in 1, tuning batch size and the number of layers to freeze had the most impact on both the
variance problem and accuracy/recall. A smaller batch size likely best addressed overfitting due to
the regularization effect the frequent, noisy updates had. Freezing many layers likely preserved the
general learnings the pre-trained weights held from the ImageNet database, simultaneously allowing
for higher performance on the validation set and preventing overfitting to the training set.

From 1, the 5th and 6th models had the best performance, overall, on the validation set. We ultimately
chose the 5th model, which marginally sacrificed on the overall accuracy and variance in favor of
a nearly 5% increase in recall. As having false negatives can be life threatening to the patient in
the context of abnormality detection, maximizing this metric was the most important factor in our
decision making.

6 Results and Discussion

6.1 Model Metrics

We assessed our model’s performance on the test set using the standard metrics of accuracy, sensitiv-
ity/recall, specificity, precision, and F1. Additionally, we also used the Cohen’s kappa statistic, which
expresses the agreement between our model and the test set, to better compare with the results from
the original MURA paper (14). We calculated these metrics both overall and for each of the different
bodily regions represented in the MURA dataset. The results are summarized in 2.

Counts Specificity Sensitivity/Recall Precision F1 Accuracy Cohen’s kappa
Wrist 134 0.91 0.81 0.87 0.84 0.87 0.72
Shoulder 113 0.70 0.78 0.75 0.76 0.74 0.48
Humerus 63 0.94 0.82 0.92 0.87 0.89 0.77
Hand 87 0.77 0.78 0.74 0.76 0.77 0.53
Forearm 59 0.84 0.63 0.77 0.69 0.75 0.48
Finger 94 0.86 0.77 0.90 0.83 0.81 0.61
Elbow 90 0.82 0.82 0.82 0.82 0.82 0.64
Overall 640 0.83 0.78 0.82 0.80 0.81 0.62

Table 2: Performance on test set, by upper-extremity region and overall. Best performance was found on
humerus radiographs, while worst performance was found on forearm radiographs.

Our model achieved an overall accuracy of 0.81, a sensitivity of 0.78, and Cohen’s kappa Score of
0.62. It’s best performance, as measured by Cohen’s kappa score and F1, was on humerus X-Rays,
while it’s worst performance was on forearms scans. Additionally, our model achieved an AUC score
of 0.89. The Confusion Matrix and ROC Curve can be found in 3.

(a) (b)

Figure 3: Confusion Matrix and ROC Curve
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6.2 Model vs Stanford Baseline vs Radiologists

Worst Radiologist Score Best Radiologist Score Stanford Baseline neXt-Ray
Wrist 0.79 0.93 0.93 0.72
Shoulder 0.79 0.86 0.73 0.48
Humerus 0.73 0.93 0.60 0.77
Hand 0.66 0.93 0.85 0.53
Forearm 0.80 0.80 0.74 0.48
Finger 0.30 0.41 0.39 0.61
Elbow 0.71 0.85 0.71 0.64
Overall 0.73 0.78 0.71 0.62

Table 3: Comparisons of the Cohen’s kappa score between our model (nExt-Ray), the Stanford baseline, and
the best/worst radiologist scores overall and on each bodily region. Best performance for each row is in green
and worst is in red. Radiologist and baseline data from (14).

The MURA paper calculated the Cohen’s kappa Scores for its model on each body region, as well as
reporting it for 3 different radiologists. A summary comparing our model with these results is found
in 3. Our model did better than the Stanford baseline and the best radiologist on finger studies (0.61
vs 0.39, 0.41) and did better than the Stanford baseline and the worst radiologist on humerus studies
(0.77 vs 0.60, 0.73). On all other body regions, our model did worse than the Stanford baseline and
the worst radiologist performance. Overall, our model did worse than the Stanford baseline, which
itself did worse than the worst radiologist performance.

Our model’s overall sensitivity of 0.78 was close to the Stanford baseline’s 0.815, but its specificity
of 0.83 was less than the Stanford baseline’s 0.887. Our AUC Score of 0.89 was a bit lower than
the baseline’s of 0.929. Overall, just as with the Stanford baseline, our model does not detect
abnormalities in Bone X-Rays as well as radiologists, showing this continues to be a challenging
problem and that more complex models may be needed.

7 Conclusion/Future Work

We introduce neXt-Ray, which takes as input Bone X-Rays from 7 upper-extremity regions of
the human body (wrist, shoulder, humerus, hand, forearm, finger, elbow) and detects whether or
not they are abnormal. Our model, which uses a single ResNet-152 architecture, outperforms the
DenseNet-169 baseline produced by the Stanford ML Group and the best radiologists on abnormality
detection in finger radiographs and outperforms the baseline and the worst radiologist performance
on humerus studies. On all other regions and overall, it performs worse than the Stanford baseline
and the worst radiologist performance. Moreover, with a recall value of 0.78, neXt-Ray is in need of
further improvements before it is reliable enough to be used in any clinical settings.

The Stanford baseline and follow-ups that have beaten both its performance and the performance of
the best radiologists have made use of complex, resource-intensive ensemble models. As such, it may
be that the task of abnormality detection from Bone X-Rays requires network architectures that are
more complicated than a single ResNet in order to reach clinically-acceptable performance. However,
increasingly large or demanding architectures may preclude the possibility of deploying these models
on cheap, offline devices in developing countries where they are most needed.

As such, working to further iterate upon a single model implementation is a natural step for future
work. One such step may entail using a more robust Loss function than simple binary cross-entropy
that weighs positive and negative examples or those from the different body regions differently,
which could allow more emphasis to be put on positive examples or those from the regions our
model struggled with - like the forearm. Given more team members and resources, we could also
try exploring a different single model architecture, like a DenseNet-169 or a DenseNet-201, or even
work to gather more X-Ray data to better combat the slight overfitting that was still evident in our
final model. Finally, Class Activation Maps could be used to localize the abnormalities in the scans,
further boosting the utility of neXt-Ray.

8 Contributions

This was a one-person project, so all aspects of the project were handled by this report’s author.
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