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Abstract
Sentiment Classification is an active area of re-
search within the Natural Language Process-
ing community, particularly the more diffi-
cult ternary formulation that attempts to clas-
sify text as positive, negative, or neutral. Re-
cent works have shown that the BERT model
benefits from further pre-training as well as
fine-tuning on cross-domain sentiment classi-
fication (Rietzler et al., 2020) (Gururangan
et al., 2020) (Sun et al., 2019). We did ex-
tensive experiments on in-domain and cross-
domain fine-tuning on SST, Yelp, and Ama-
zon dataset. We discovered that even a lit-
tle bit of in-domain data during fine-tuning
can boost the model’s accuracy to near exclu-
sive in-domain fine-tuning. We observed that
both in-domain and cross-domain further pre-
training hurt ELECTRA’s performance while
boosting BERT’s performance, and hypothe-
sized the root causes of ELECTRA’s unsuc-
cessful further pre-training.

1 Introduction

Sentiments are heavily embedded in every English
sentence. They indicate the attitudes, feelings, and
emotions of the speaker. Supervised Sentiment
Classification refers to the task of detecting senti-
ment polarity in sentences. It is an active area of
research within the Natural Language Processing
community, particularly the more difficult ternary
formulation that attempts to classify text as positive,
negative, or neutral. Recent work has shown that
sentiment classifiers that are fine-tuned from BERT
models can achieve state-of-the-art results on vari-
ous datasets (Rietzler et al., 2020) (Sun et al., 2019)
(Du et al., 2020a) (Du et al., 2020b). These works
have also provided guidance on how to best fine-
tune BERT models for sentiment analysis across
different domains, focusing on the benefits of fur-
ther pre-training the models using domain-specific
text and fine-tuning using joint-domain training

(datasets from multiple domains, instead of just
one) to achieve their results. However, these prior
works used the original BERT models (Devlin et al.,
2019) and focused on only two domains, leaving
an open question as to whether these techniques
generalize to newer BERT-like models (with differ-
ent pre-training objectives), across a larger number
of domains (where there may be semantic clashes
among the domains), and when the computational
budget is much smaller (fine-tuning on the order
of hours, as opposed to days). Our goal is to an-
swer these questions using an ELECTRA model
(Clark et al., 2020) and using datasets from the
movie, Yelp, and Amazon product review domains.
Our approach is to 1). Take the pre-trained ELEC-
TRA small model and perform further pre-training
for a small number of steps (i.e. ≤ 20,000) using
sentiment-laden text. 2). Perform fine-tuning on
both out-of-the-box ELECTRA and further pre-
trained ELECTRA with data from multiple do-
mains. We hypothesize that further pre-training
and joint fine-tuning using all three datasets would
offer a greater performance boost over out-of-the-
box ELECTRA across all of our evaluation sets
than no further pre-training or fine-tuning using
only one or two of the datasets. By comparing the
results from our further pre-training and fine-tuning
experiments using different domain combinations
of training data, we found that further pre-training
for a small number of steps worsens ELECTRA’s
performance and having data from all the domains
during fune-tuning, even with small amounts, can
result in a boost in overall performance across all
datasets.

2 Related Work

2.1 Further Pre-Training

Further pre-training has been studied extensively
using several variants of BERT. Gururangan et



al. examined the performance gains of domain-
specific pre-training with RoBERTa. They fo-
cused on two forms of the additional pre-training:
domain-adaptive pre-training (DAPT), which uses
text that comes from the same general domain
as the target task, and task-adaptive pre-training
(TAPT), which uses the task’s unlabeled data (and
therefore comprises a much narrower scope than
that of the entire domain and is much less resource
intensive) (Gururangan et al., 2020). The authors
found both forms of further pre-training to be vary-
ing degrees of beneficial across all domains they
tested, with the more efficient but targeted TAPT
even matching the performance of the broader
DAPT for some domains.

As part of their exploration of how to best fine-
tune models for text classification, Sun et al. ex-
plored the benefits of further pre-training on sen-
timent analysis (Sun et al., 2019) using a vanilla
BERT model. They also found that the further pre-
training using specific in-domain data was helpful
for the sentiment analysis task, but that pre-training
using data from across domains, even if both were
sentiment-laden text as found in reviews, was not
as helpful as using the domains alone. They partic-
ularly focused on cross-domain pre-training using
movie and restaurant reviews and suspected the
data distributions were too different.

A shortcoming of these prior works on further
pre-training is that they focus exclusively on BERT
models that use the traditional masked language
modeling objective, leaving an open question as
to whether models such as ELECTRA and XLNet
which use different objectives would also derive
benefits from it.

2.2 Cross-Domain Sentiment Analysis

Rietzler et al. focus on improving aspect-target
sentiment classification using numerous strategies,
including cross-domain further pre-training and
fine-tuning, working with laptop and restaurant
reviews and off BERT-base. They found that fur-
ther pre-training using sentiment-laden text, even
if it does not match the exact domain as the test
set, was still beneficial. They theorize that be-
cause the BERT-base model was pre-trained pri-
marily on fact-based text akin to Wikipedia, further
pre-training it with any opinion-based sentiment
text helps performance on ATSC, irrespective of
whether the domains align (Rietzler et al., 2020).
They yielded their best performance on both do-

main test sets by combining their training datasets
in a joint fine-tuning approach. They speculated
that because the two domains were not in conflict
with each other, simply adding them together just
provided more training data and led to a standard
boost in performance. This left an open-question as
to whether the joint-training benefit they observed
would have remained had they kept the size of the
training set fixed and sampled from both domains,
rather than just concatenating them together.

Du et al. tackled cross-domain analysis by in-
troducing novel pre- and post- training procedures
to BERT, with the goal of being able to only train
using labeled sentiment data in a source domain
but have robust performance in the target domain
(Du et al., 2020a). First, they replaced the next
sentence prediction task with a domain distinguish
task, where the model must learn to determine if
two input sentences are drawn from a target do-
main or mixed domains. Next, the MLM objective
is run using unlabeled text from the target domain
in order to encourages BERT to learn representa-
tions for fine-grained opinion words in the target-
domain. Finally, the resultant model is put through
adversarial training for an aggressive fine-tuning.
The authors designed a sentiment classifier and a
domain discriminator that operate on the CLS to-
ken’s hidden state. The sentiment classifier layer
is trained using labeled data from the source do-
main, while the domain discriminator is jointly
trained to determine which domain sample text
comes from. The BERT model’s parameters are
optimized to increase the discriminator loss. Du et
al. achieved success with this multi-step approach,
achieving state-of-the-art results on all Amazon re-
view benchmarks. However, adversarial training
on text is known to be notoriously difficult (Clark
et al., 2020), so the accessibility of using these
methods in a time-efficient manner is unclear.

3 Data

Sample review from SST-Tree:
[positive], elaborate continuation

Sample review from Yelp:
[neutral], Its an OK.... Joint.
Good service. The bartender is
really nice and fast. And the
menu is good for quick late night
apps. The karaoke rooms need to
be all speuced up. But would come



back again!

Sample review from Amazon:
[negative], Would not talk to my
computer nor my smart phone;
sorry!

We use the latest version of the Yelp Academic
Dataset1 for further pre-training of ELECTRA
Small. It consists of 8,635,403 business reviews,
of which we have randomly sampled 100,000 for
use in our constrained pre-training setup.

The first dataset we use for fine-tuning and eval-
uation is the Stanford Sentiment Treebank dataset
(SST) (Socher et al., 2013), particularly the SST-3
formulation that uses positive, negative, and neutral
labels. It consists of 8,544 movie reviews, which
are split up into 159,274 labeled phrases.

The Yelp dataset we use for fine-tuning and eval-
uation is the same as the one used in (Potts et al.,
2020), which is cited from (Zhang et al., 2015). It
is derived from an earlier version of the Yelp Aca-
demic Dataset. The training file contains 650,000
reviews and their ratings. The test file contains
50,000 reviews and we split it in half by line num-
bers to create dev and test sets. We label the re-
views by putting ratings less than 3 as negative,
those equal to 3 as neutral, and those greater than
3 as positive. This formulation follows the one
described in (Potts et al., 2020). After processing,
there are 260,000 positive examples, 260,000 neg-
ative examples, and 130,000 neutral ones in the
training set and we took only the fist 100,000 ex-
amples for fine-tuning on the Yelp dataset (more
details can be found in the Experiments section).
There are 9,577 positive examples, 10,222 negative
examples, and 5,201 neutral ones in the dev set.

We also use the Amazon review dataset (Ni et al.,
2019) because it is a widely-adopted benchmark
for sentiment analysis, and it is used in fine-tuning
and evaluating models such as BERT-DAAT(Du
et al., 2020a), WTN (Du et al., 2020b), and Sentix
(Zhou et al., 2020). This dataset contains 233.1
million Amazon product reviews across 29 differ-
ent categories from May 1996 to Oct 2018. We
sample 25,000 recent reviews from each of the four
most popular categories: Books, Movies and TV,
Electronics, and Home and Kitchen. Specifically,
we sampled 8,333 most recent 4/5-star reviews as
positive examples, 8,333 most recent 3-star reviews
as neutral examples, and 8,334 most recent 1/2-star

1https://www.yelp.com/dataset

reviews as negative examples. In the end, our train-
ing set consists of 100,000 reviews evenly split
between positive, neutral, and negative. We used
the same processing technique to obtain our 25,000
dev and test sets.

4 Models

Figure 1: Generator takes in the masked input and re-
places the [MASK] tokens with learned tokens that re-
semble original identities.

Figure 2: Discriminator takes in the output token se-
quence of the Generator and predicts whether each to-
ken is original or replaced.

ELECTRA ELECTRA (Clark et al., 2020) is
a new pre-training approach done to the under-
lying BERT model that trains the generator and
the discriminator transformer models. After ran-
domly replacing tokens in the input by the [MASK]
token using BERT’s Masked language modeling
(MLM), the generator replaces the [MASK] to-
kens with alternative tokens sampled from a small
generator network in order to recreate the origi-
nal tokens. Specifically, it is a small MLM that
is trained jointly with the discriminator using the
maximum likelihood objective. If the generator
happens to predict the same token as the masked
original, the predicted token is treated as ‘original’
instead of ‘replaced’. Let x = [x1, ..., xn] be the
sequence of input tokens. The generator’s encoder
maps x into contextualized vector representations
h(x) = [h1, ..., hn]. Let t be the position where
xt = [MASK], and let e be token embeddings.
The generator outputs an output distribution over
token xt with a softmax layer:

pG(xt|x) =
exp(e(xt)

Thg(x)t)∑
x′ exp(e(x

′)Thg(x)t)

The other part of the model is the discriminator
whose goal is to predict whether a token in its input



sequence is sampled from the generator network
or part of the original input using a sigmoid output
layer:

D(x, t) = sigmoid(wThD(x)t)

The loss equations are as follows:

LMLM (x, θG) =E(
∑
i∈m
−logpG(xi|xmasked))

LDisc(x, θD) =E(
n∑
t=1

−I(xcorruptt = xt)

· logD(xcorrupt, t)

− I(xcorruptt 6= xt)

· log(1−D(xcorrupt, t)))

The combined loss is minimized over a large corpus
X of raw text by:

L = minθG,θD
∑
x∈X

LMLM (x, θG)+λLDisc(x, θD)

During pre-training, the generator is trained
jointly with the discriminator, but only the discrim-
inator is used for fine-tuning for the downstream
tasks. Although ELECTRA has a structure simi-
lar to GAN, the generator is trained cooperatively
instead of adversarially because it is impossible
to backpropagate through sampling from the gen-
erator. ELECTRA also separates the embedding
size from the hidden size, and adds an additional
linear layer to project the embeddings from their
embedding size to the hidden size if the embedding
size is smaller.

Baseline Our baseline is a pre-trained ELECTRA
small with a linear classifier head attached on top
of the [CLS] token, without additional pre-training
or fine-tuning.

Proposed model A recurring theme throughout
the papers (Sun et al., 2019) (Rietzler et al., 2020)
is that additional domain-specific pre-training of
BERT models provides a significant boost in per-
formance on the downstream task. BERT models
were pre-trained using BooksCorpus and English
Wikipedia datasets that are largely factual and in-
formative. The masked word prediction is there-
fore geared more towards predicting words without
emotion or opinion, which influences how it per-
forms as a language model. On the other hand, the

sentiment analysis task involves informal and sub-
jective reviews written by the general population.
It would not be surprising that further pre-training
with sentiment texts would boost the model’s per-
formance on downstream sentiment classification
tasks.

Since ELECTRA has a nearly identical under-
lying model structure as BERT, was trained with
the same data, and only differs in its pre-training
approach, we theorize that the same pre-training
rules outlined above should boost ELECTRA’s per-
formance as well.

Base on the superior performance of ELECTRA
on several benchmarks with smaller model sizes
and less training resources, we propose to further
pre-train the ELECTRA small with opinion-based
sentiment text dataset from Yelp to nudge it towards
making more sentiment-esque predictions. We also
fine-tuned the same model with different datasets to
see how additional out-of-domain fine-tuning could
influence its performance. We explored the perfor-
mance change with only fine-tuning on ELECTRA
small, and the combination of both additional pre-
training and fine-tuning on both BERT based un-
cased and ELECTRA small.

5 Experiments

ELECTRA Pre-training We further pre-trained
ELECTRA from the released ELECTRA small
checkpoint using a random sample of 100,000 re-
views from the Yelp Academic Dataset. We used
a batch size of 64 and a learning rate of 5e−5 and
ran the pre-training up to 17,000 steps/iterations,
saving checkpoints every 1,000 steps.

BERT Pre-training Similarly, we performed
additional pre-training on BERT based uncased
model with the same 100,000 data points from the
Yelp Academic Dataset to compare against the re-
sults produced by ELECTRA for our setup.

ELECTRA Fine-tuning We performed fine-
tuning on both out-of-the-box ELECTRA and fur-
ther pre-trained ELECTRA. The further pre-trained
ELECTRA is only fine-tuned on the Yelp dataset
and we had multiple experiments for fine-tuning
out-of-the-box ELECTRA using different combina-
tions of training data. For every fine-tuning experi-
ment we did, we kept the total number of training
examples as 100,000. For fine-tuning only on the
Yelp dataset, we took the first 100,000 examples
in the training set. The Amazon dataset already



has 100,000 training samples so we just shuffled
the dataset before passing it into the model. For
fine-tuning on multiple datasets combined, we ran-
domly sampled examples from each dataset evenly
so the total number of examples is still 100,000.
We fixed the random state every time we sampled
for reproducibility purposes. In particular, during
training, we carved out 10% of the training data for
early stopping checks. If the training error doesn’t
improve for 2 iterations, then we stop the training.
After a hyperparameter search, we found a batch
size of 16, gradient accumulation steps of 128, and
learning rate of 0.0001 to offer the best results. The
number of epochs for each experiment is shown in
table 1. After each fine-tuning, we evaluated the
model on all three dev sets.

5.1 Metrics

Our main metric is the Macro F1 Score (aver-
aged across the datasets) and we use it to compare
the performance of different models. We chose
Macro F1 because it puts equal weights on differ-
ent classes. In our datasets, the number of exam-
ples from different classes varies and we did not
want that variance to affect the overall F1 score
across the whole dataset. Furthermore, F1 score
takes into account both precision and recall and is
widely used in NLP. We also compute precision
and recall when evaluating the models so we can
get a more nuanced view of the types of errors our
model is making than we would using simple ac-
curacy. We calculate F1, precision, and recall for
individual classes as well, which allows us to see if
the models performs particularly well or poorly at
predicting certain labels.

6 Results and Analysis

6.1 Results

See Table 1, 2 for model details. See Table 3 for
results on SST, Yelp and Amazon datasets. The
values in the tables are scaled by 100.

6.2 The Effects of Further Pre-training

As shown in table 2, the Macro-F1 score after fine-
tuning on Yelp dropped from 68.1 for the vanilla
ELECTRA small to 59.5 when we performed fur-
ther pre-training for 10,000 steps. In particular,
the score got lower on every dev set of the three
datasets, with the most significant decrease on the
Amazon dataset. We also noticed similarly poor re-
sults for other numbers of pre-training steps (3,000

# Fine-tuned Dataset(s) # Epoch Macro F1
0 / / 20.2
1 SST 9 57.9
2 Yelp 12 68.1
3 Amzn 14 67.0
4 SST + Yelp 8 68.6
5 SST + Amzn 12 71.1
6 Yelp + Amzn 13 69.8
7 SST + Yelp + Amzn 10 73.6

Table 1: The same vanilla ELECTRA-small model fine-
tuned on 100,000 samples randomly drawn from one
or more datasets, the number of Epochs it takes to con-
verge, and the Mean Macro F1 score (%) obtained from
validating on SST, Yelp and Amazon’s dev set. Note
that model 0 is the baseline with no pre-train or fine-
tune.

# Model Pre-train # steps Macro F1
8 BERT 55.1
9 BERT Yelp 10k 55.5
10 BERT Yelp 17k 55.6
2 ELECTRA 68.1

11 ELECTRA Yelp 10k 59.5

Table 2: The Mean Macro F1 score (%) for the BERT-
based uncased and the ELECTRA-small models with
or without pre-training on Yelp with different number
of steps and fine-tuned on Yelp. Note that model # 2
already exists in table 1.

steps to 17,000 steps).
To investigate the reason behind ELECTRA’s

poor performance with further pre-training, we
repeated our pre-training experiment on BERT-
base to determine if the issue was with our pre-
training setup or something inherent with ELEC-
TRA. BERT has been widely studied for vari-
ous NLP tasks, has been successfully further pre-
trained in prior work, and has a more stable and
well documented codebase. We used the exact
same pre-training data we used for ELECTRA pre-
training on BERT-base and also fine-tuned the fur-
ther pre-trained BERT model on Yelp. As shown
in 2, further pre-training BERT, even for a lim-
ited number of steps, did boost the model’s per-
formance, albeit modestly. The macro-F1 score
of 55.6 after 17,000 steps of pre-training is higher
than the 55.1 gained by only fine-tuning the model.
The performance gain is most prominent on the
Yelp and Amazon datasets, but somewhat less sta-
ble for SST. Still, they demonstrate the correctness
of our pre-training setup.



Dataset SST DEV TEST
Model 0 1 2 3 4 5 6 7 8 9 10 11 7

+
R 02.3 86.9 66.4 60.1 87.8 82.4 58.8 83.3 52.1 54.0 37.5 47.7 85.7
P 35.7 78.3 73.2 74.6 75.9 75.3 77.2 76.4 59.8 59.9 64.3 59.1 81.1
F1 04.2 82.4 69.7 66.6 81.4 78.7 66.8 79.7 55.7 56.8 47.4 52.8 83.3

o
R 00.0 22.3 27.5 50.7 22.3 20.1 51.1 48.5 13.9 13.1 16.5 29.3 44.2
P 00.0 54.3 26.6 25.2 49.0 35.9 24.0 38.5 22.6 22.9 22.9 23.8 31.4
F1 00.0 31.6 27.0 33.6 30.6 25.8 32.7 42.9 17.2 16.7 19.2 26.3 36.7

-
R 97.4 89.7 68.9 47.4 85.3 83.9 46.7 62.9 65.7 66.7 74.5 57.9 63.3
P 38.9 78.3 64.0 72.0 75.6 73.7 72.5 81.8 50.8 52.1 48.5 53.8 82.3
F1 55.6 81.5 66.4 57.2 80.1 78.5 56.8 71.1 57.3 58.5 58.8 55.8 71.5

Dataset Yelp DEV TEST
Model 0 1 2 3 4 5 6 7 8 9 10 11 7

+
R 02.1 86.3 85.9 74.0 86.5 74.0 86.1 88.7 80.9 81.0 78.3 82.4 91.0
P 38.4 73.5 87.4 87.8 85.0 88.2 86.0 83.8 77.9 78.4 81.9 80.9 86.8
F1 04.0 79.4 86.7 80.3 86.8 80.5 86.0 86.2 79.4 79.7 80.1 81.6 88.9

o
R 00.0 02.5 62.3 80.5 44.0 73.5 53.6 52.9 29.2 30.5 31.3 47.9 55.6
P 00.0 40.7 57.0 36.3 57.5 42.6 56.4 55.4 48.5 47.4 49.8 50.4 56.4
F1 00.0 04.7 59.5 50.5 49.8 53.9 55.0 54.1 36.5 37.1 38.4 49.1 56.0

-
R 98.2 93.4 86.0 50.7 91.0 69.3 88.0 84.7 84.0 83.3 88.1 82.9 84.9
P 41.0 71.1 88.8 93.5 82.4 88.7 86.0 87.5 72.7 73.0 71.7 82.3 88.8
F1 57.8 80.7 87.4 65.8 86.5 77.8 87.0 86.1 77.9 77.8 79.1 82.6 86.8

Dataset Amazon DEV TEST
Model 0 1 2 3 4 5 6 7 8 9 10 11 7

+
R 06.5 78.7 75.4 93.5 84.1 90.2 91.4 90.5 76.2 77.3 69.9 69.8 91.2
P 30.9 80.3 86.7 88.9 85.6 89.6 88.5 88.0 71.5 72.1 80.0 73.9 88.5
F1 10.7 79.5 80.7 91.1 84.8 89.9 89.9 89.3 73.8 74.6 74.6 71.8 89.9

o
R 00.0 09.0 54.0 76.0 33.1 68.1 68.8 70.7 21.0 21.5 25.5 37.5 70.3
P 00.0 44.2 64.1 76.2 69.6 78.1 77.4 73.8 74.2 73.7 66.9 59.9 74.4
F1 00.0 14.9 58.6 76.1 44.8 72.7 72.9 72.2 32.7 33.3 36.9 46.2 72.3

-
R 93.7 94.0 88.1 79.7 93.7 86.8 84.7 81.4 86.4 85.2 90.6 83.8 81.5
P 33.6 51.7 68.5 83.9 60.7 77.5 78.5 80.3 52.3 52.1 51.9 58.6 79.5
F1 49.4 66.7 77.1 81.8 73.7 81.9 81.5 80.9 65.2 64.7 66.0 69.0 80.5

Table 3: The Recall (%), Precision (%), and F1 (%) score per category (‘+’ for positive sentiment, ‘o’ for neutral,
and ‘-’ for negative) across all three datasets. The models are referred to by their model number in table 1, 2. The
last column is the results on the test set obtained by our best model, model 7 in table 1.

As such, our results show that ELECTRA does
not seem to mesh well with further pre-training,
at least at a low number of steps and for its
smallest variant. One possible explanation for
ELECTRA’s sub-par performance when further
pre-trained could be that the intricate relationship
between its generator and discriminator is being
disrupted. During further pre-training, the genera-
tor must learn to adjust its distribution over words
for the [MASK] token to be more oriented towards
sentiment-laden words to be successful with the
Yelp review data we are using. The discriminator
must then adapt to understand that these sentiment-
laden words are not replacements, but the orig-
inals. When pre-training at this low number of
steps, the generator likely does not have enough
time to adapt its distribution to place more weight
on sentiment-heavy words, and therefore is likely
passing the wrong words to the discriminator the
majority of the time. This behavior may actually
worsen the discriminator’s ability to detect replace-
ments. Because the generator is making mistakes
far more frequently than it was when it was last
checkpointed, a "replaced" token is passed from

the generator to the discriminator far more often.
In this comparatively easier situation, the discrimi-
nator may be learning that increasingly predicting
"replaced" is the easiest path to minimizing its own
loss in the face of its weakened partner. This pro-
cess may cause the discriminator to forget many
of the learnings about properly detecting replace-
ments it gained from its initial pre-training and
actually worsen its performance, which is reflected
in its results on the downstream sentiment analysis
task. BERT, on the other hand, does not have this
lockstep pre-training and can just adjust its mask
token prediction distribution to be more sentiment
oriented, hence its increasing performance. More
experimentation would be needed to see if further
pre-training ELECTRA for more steps can get it
out of this degenerative state or if it is unrecover-
able.

6.3 Joint Fine-tuning Analysis
We will analyze the results of different combina-
tions of training data one by one.

• SST + Yelp: After fine-tuning vanilla ELEC-
TRA on these two datasets, we observed that



the model’s performance on SST and Yelp
was a bit lower than those exclusively fine-
tuned on Yelp or SST, but its overall perfor-
mance across all the datasets improved. Fur-
thermore, the F1 score on the Amazon dev set
is lower for this setting than only fine-tuning
on Yelp, indicating that swapping Yelp sam-
ples for those from SST in the training data
hurts the model’s performance on the Ama-
zon dataset. This suggests there is a similarity
between the Yelp and Amazon data that is not
captured in SST examples.

• Yelp + Amazon: We observe that the perfor-
mance of this model on the Yelp and Amazon
dev sets is worse than the model that fine-
tuned on Yelp or Amazon alone, but only
slightly. Its performance on Yelp is better
than the model that fine-tuned on SST and
Yelp, further emphasizing there is some un-
derlying similarity between Amazon and Yelp
data that is not shared with SST. In fact, this
model performed worse on SST than either
model solely fine-tuned on Yelp or Amazon,
indicating these two datasets seem to reinforce
each other in a way that has a reductive effect
on its performance on SST.

• SST + Amazon: Similar to Yelp + Amazon,
this combination of training data leads to a per-
formance drop on the SST and Amazon dev
sets relative to SST or Amazon only. How-
ever, it does better on Yelp than SST or Ama-
zon alone. One reason for this additive ben-
efit could be that the very different SST data
makes the model more robust to the slight vari-
ations between the similar Amazon and Yelp
data. The Amazon samples then provides the
model with data similar enough to the Yelp
domain to allow it to perform well on Yelp.

• SST + Yelp + Amazon: We can see that this
model’s performance on SST is better than the
one using SST+Yelp or SST+Amazon. How-
ever, its performance on the Amazon dataset
is worse than any other training data combina-
tion that involves the Amazon dataset, but in-
significantly so. Although this model’s perfor-
mance on each dataset was not as high as the
models trained exclusively on those datasets,
it was not very far off (< 2.4 for all three).
This is fairly remarkable considering each do-
main is represented in this model’s dataset

with only 1/3 the data that was present for it
in the solo experiments. Moreover, this com-
bination gives us the highest Macro-F1 score
(73.6) averaged across all datasets out of all
the models we have experimented with. Its
performance also remained consistent when
evaluated on our test set.

Based on the results of our joint fine-tuning experi-
ments, we found that the Yelp and Amazon datasets
seem to have some commonalities and can incon-
sistently lead to gains in the other’s performance
if one is absent from the fine-tuning. However,
the SST dataset is very different than the others
and some examples from it must be present in the
training set for the model to do well in this domain.
One possible explanation is that both the Yelp and
Amazon datasets contain user-written reviews from
multiple diverse categories (the Yelp dataset has
reviews on restaurants, auto shops, etc. The Ama-
zon dataset contains reviews on kitchen supplies,
DVD, etc), while the SST dataset is far more ho-
mogenous and only contains movie reviews written
primarily by critics. Regardless of the similarities
or differences between the domains, we found mod-
els fine-tuned on only one of our datasets are not
directly transferable to another dataset without a
significant performance drop, possibly due to se-
mantic clashes between the domains. However,
given that the model fine-tuned on a fixed amount
of data from all three datasets gave us the best
overall performance, we conclude that even small
amounts of data from each domain can result in
a significant boost in performance for ELECTRA
over not having any data from that domain. More-
over, having training examples from differing, but
similar domains (Amazon/Yelp) can help ELEC-
TRA with an extremely different domain (SST), as
seen by the gains in SST performance of the model
fine-tuned using all 3 datasets over those fine-tuned
with just 2 (including SST). This finding suggests
fine-tuning ELECTRA to achieve strong (though
perhaps not peak) performance on sentiment analy-
sis across multiple domains can be accomplished
by using just a small amount of training examples
from across each of the desired domains.

6.4 Qualitative Analysis

To gain further insight into the performance of
Model 7, our best model, we perform attribution
analysis with respect to the predicted sentiment for
several examples. For these examples, words high-



Figure 3: Neutral example from SST misclassified as negative (top) and positive (bottom)

Figure 4: Inputs where the meaning of "hot" and "fast" differ by domain, but the model treats them the same

lighted in green contributed to the probability of
the predicted (possibly incorrect) class, while those
in red moved the model away from the prediction.

6.4.1 Neutral Examples
Model 7 performed the worst on neutral examples,
particularly neutral examples from the SST dataset.
3 shows attribution analysis for a few such misclas-
sified neutral examples (incorrectly classified as
positive or negative). As shown here, SST’s neutral
examples tend to be challenging, even for humans,
to decipher as being truly neutral, often easily pass-
ing as positive or negative. Moreover, these neutral
examples still tend to use fairly charged words,
like "terrible", "fascinating", and "unique", each of
which tends to strongly move the model towards a
prediction of positive or negative rather than neu-
tral. This itself speaks to another finding: Model 7
still tends to give precedence to individual words
and their charges over the overall sentence struc-
ture when making predictions. For instance, if we
change "terrible" in the top example in 3 to the less
charged "bad", the model switches the prediction
from negative to neutral. As such, the model clearly
can detect when an example is neutral, but it can
be easily thrown off by particular words.

6.4.2 Cross-Domain Meaning Clash
One area of concern when building a model for
cross-domain sentiment analysis is how the model
handles words that have different polarity in dif-
ferent domains. Two such words are "fast" and
"hot": both tend to have a positive meaning in
restaurant reviews (fast service or hot food), but
for product reviews and movie reviews often have
negative sentiment (running out of battery fast, get-
ting too hot, too fast to understand, etc.). An ideal
model should be contextually aware and adapt the
effects of those words accordingly. However, as

seen in 4, Model 7 does not do this. For the top
review (coming from a restaurant domain), both
words help the model correctly classify the review
as positive, with both having positive attribution
for the correct prediction. But the model does not
adapt its understanding of those words for the two
remaining reviews: it incorrectly views the words
as positive in the middle product review, resulting
in an incorrect prediction of this negative review as
positive; for the bottom movie review, it continues
to incorrectly view the words as positive and has
them pull away from the correct prediction.

7 Conclusion and Future Work

We studied the effects of further pre-training and
fine-tuning ELECTRA for cross-domain sentiment
classification. The architectural differences be-
tween ELECTRA and BERT make further pre-
training ELECTRA more challenging. We found
that further pre-training ELECTRA for a small
number of steps hurt the model’s performance and
even small amounts of data from each domain dur-
ing fine-tuning could boost the model’s overall per-
formance across the domains.

Since ELECTRA outperforms BERT even with-
out further pre-training, one way to extend this
work is to design a pre-training mechanism that tai-
lors to the lockstep training in ELECTRA. Specifi-
cally, we will analyze the individual loss of the gen-
erator and discriminator and see if the discriminator
outperforms the generator by a large margin. We
will also freeze the discriminator every few training
steps to give the generator more learning opportu-
nities so that they are on par with each other. Ad-
ditionally, our experiments on cross-domain fine-
tuning can be replicated across a much larger num-
ber of domains to see if our findings scale.



8 Authorship Statement

Anfal ELECTRA pre-training, main contributor
to ELECTRA fine-tuning, and paper writing.

Meredith Collect and filter Yelp dataset, ELEC-
TRA fine-tuning, and paper writing.

Silvia Collect and filter Amazon dataset, BERT
pre-training, ELECTRA fine-tuning, and paper
writing.

9 Appendix

Fine-tuning ELECTRA code is based on
https://github.com/cgpotts/cs224u/blob/

master/hw_sentiment.ipynb

The ELECTRA and BERT repos used for further
pre-training are accessible here: https://github.
com/google-research/electra and https://

github.com/google-research/bert
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